Light Technology in Medical Devices

Alicia Corona, Claire Mitchell, Norma Munoz

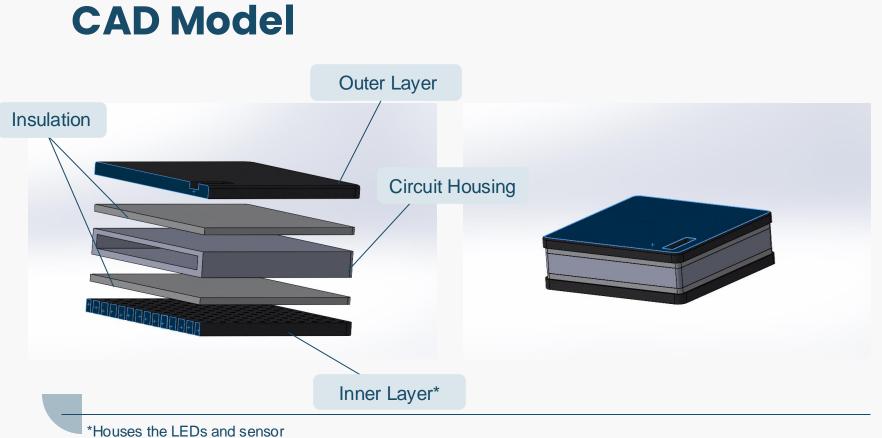
Project Description

- Utilize photo biomodulation (PBM) technology
- Red LED lights, infrared sensors, & rechargeable battery
- Design a cutting-edge tool that monitors blood flow & oxygen circulation
- Offers a non-invasive solution for cardiovascular health monitoring

- Enhances cellular function, promotes tissue repair, and reduces inflammation
- Applicable to medical institutions, rehab centers, military, and sports teams
- Partnering with EE & CS Capstone to enhance teamwork skills
- Jesslynn Armstrong, President, Light Matter Solutions, LLC

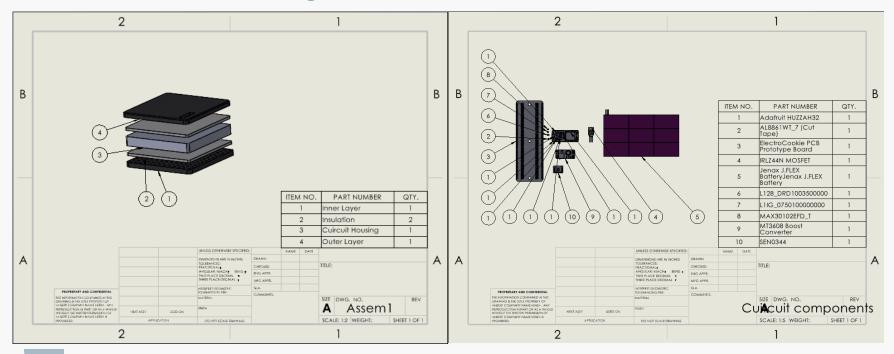
Claire, Slide 1

4	Power Output													
1			9							Logond				
-	Battery Life		9			·				Legend				
4	Unit Cost									Α			_	Therapy Pad
5	Wavelength (Infrared li	ght)		9						В	Garmi	in HRM-D	Jual Hear	rt Rate Monitor
6	Wavelength (Red LED	s)		9						С	Innovo	iP900BP	-B Finger	Pulse Oximeter
7	Treatment duration			3		3	3							
				Те	chnical R	Requireme	nts			Custom	er Opinio	n Survey		
	Customer Needs	Customer Weights	Power Output	Battery Life	Unit Cost	Wavelength (Infrared light)	Wavelength (Red LEDs)	Treatment Duration	1 Poor	5	3 Acceptable	4	5 Excellent	
1	Disinfectable	4						1		Α	В		С	
2	Rechargeable	3	9	9							С	Α		
3	Light Exposure	4				9	9	9	AC				В	
4	Time Duration	3	3	3		3	9	9			AC		В	
5	Automatic shut down	1	3	9				3	BC		AC			
6	Cost effective	3			9					Α		BC		
	Technical Requirements	Units	W	min	\$(USD)	nm	nm	min						
	Technical Requirements	Target	20-50	120	290	850-880	650-670	20						
	Absolute Technical Impor	tance	39	45	27	45	63	70						
	Relative Technical Importa	nce (%)	13.49	15.57	9.34	15.57	21.80	24.22						

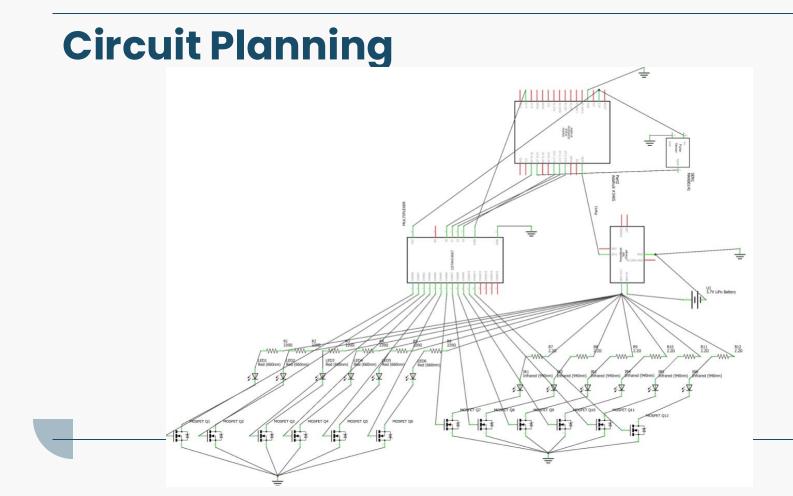

CR/ER Discussion

Customer Requirements

- Disinfect-able
- Rechargeable
- Light Exposure
- Time Duration
- Automatic shut off
- Cost effective


Engineering Requirements

- Power Output (20-50W)
- Battery Life (120 min)
- Unit Cost (Around \$290)
- Wavelength IR (850-880)
- Wavelength Red (650-670)
- Treatment time (20min)



Norma, Slide 4

CAD Drawings

Norma, Slide 5

Claire, Slide 6

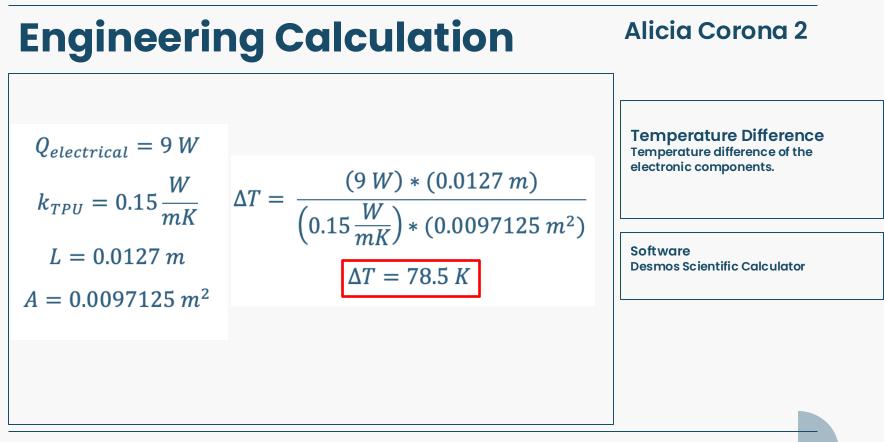
Engineering Calculation

$$Q = -kA \frac{\Delta T}{L} \Longrightarrow \Delta T = \frac{Q * L}{k * A}$$

$$Q_{electrical} = heat \ transfer \ rate \ of \ electrical \ components \ (W)$$

$$k_{TPU} = thermal \ conductivity \ of \ TPU \ (\frac{W}{mK})$$

$$L = thickness \ of \ material \ (m)$$


$$A = cross \ sectional \ area \ (m^{2})$$

$$\Delta T = temperature \ difference \ (Kelvin)$$

Alicia Corona 1

Difference erence of the nents.

Calculator

Engineering Calculation

 $P_{\mathrm{total}} = N imes P_{\mathrm{LED}}$

 P_{total} is the total power consumption in watts (W),

N is the number of LEDs or light sources,

 P_{LED} is the power consumption of a single LED or light source in watts.

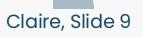
 $I = rac{P}{A}$

I is the irradiance (light intensity) in watts per square meter (W/m²),

P is the total power emitted by the light source in watts (W),

A is the area the light is covering in square meters (m²).

E = I imes t


E is the energy exposure in joules per square centimeter (J/cm²),

I is the **irradiance** (intensity of light) in watts per square centimeter (W/cm²),

t is the **exposure time** in seconds (s).

Claire Mitchell

- 1. Total power Calculation
- 2. Irradiance Calculation
- 3. Energy Exposure

Engineering Calculation

Red LED- N: 16, P: 0.11W
IR LED- N: 32, P: 0.05W

$$P_{total} = N \cdot P_{LED}$$

 $P_{total} = (16 \cdot 0.11W) + (32 \cdot 0.05W)$
 $P_{total} = 3.36W$
 $325.5 \frac{W}{m^2} = 0.03255 \frac{W}{cm^2}$
 $E = I \cdot t$
 $E = (0.03255 \frac{W}{cm^2})(20 \min)(\frac{60sec}{1min})$
 $E = 39.06 \frac{J}{cm^2}$

Claire Mitchell

- 1. Total power Calculation
- 2. Irradiance Calculation
- 3. Energy Exposure

Claire, Slide 10

Engineering Calculation	Norma Munoz
• Cross sectional area of the channel	
	Pressure Variations in TPU
${ m Re}=rac{ ho v D}{\mu}$ • Reynolds number (Re) for the flow • Re>4000, flow is turbulent	Pressure drop
$\Delta P = f \cdot rac{L}{D} \cdot rac{ ho v^2}{2}$ • Darcy-Weisbach equation for pressure drop • f= 0.03	
	Norma, Slide 11

Engineering C	alculation	Norma Munoz
Coolant: Water (density $ ho=998{ m kg/m}^3$, dynar	nic viscosity $\mu = 0.001{ m Pa}\cdot{ m s}$)	
TPU Channel Inner Diameter (D) = 0.005 m (5 r	nm)	
Channel Length (L) = 1 m		Fluid Dynamics for pressure
Flow Rate (Q) = 1 liter per minute = 1.67×10 Tensile Strength: ~30 MPa	$^{-5}\mathrm{m}^3/\mathrm{s}$	variations in cooling mechanisms:
Elastic Modulus: ~10-30 MPa (deper	nds on TPU grade)	Bernoulli's Equation
$A = rac{\pi (0.005)^2}{4} = 1.9635 imes 10^{-5}{ m m}^2$	${ m Re} = rac{998 imes 0.85 imes 0.005}{0.001} = 4241.5$	
$v = rac{1.67 imes 10^{-5}}{1.9635 imes 10^{-5}} = 0.85 { m m/s}$	$\Delta P=0.03\cdot 200\cdot rac{998 imes 0.7225}{2}$	
	$\Delta P = 0.03 \cdot 200 \cdot 360.615 = 2163.69 \mathrm{Pa} = 2.16 \mathrm{kPa}$	

Norma, Slide 12

FMEA

	Part # and Functions	Failure Mode	Potential Effect(s) of Failure	Severity (S)	Potential Causes of Failure	Occurance (O)	Current Design Controls Test	Detection (D)	RPN	Recommended Action
1	Red LED	Electrical	Could start an electrical fire resulting in damage to the device as well as potential burning of the patient	10	Short Circuit	3	Overload and Short-Circuit Testing, IEC Standards	3	90	Allow for breatheable material as insulation, and make sure the wiring isnt too stacked on top of eachother to casue a short circuit
2	IR LED	Electrical	Could start an electrical fire resulting in damage to the device as well as potential burning of the patient	10	Short Circuit	3	Overload and Short-Circuit Testing, IEC Standards	2	60	Allow for breatheable material as insulation, and make sure the wiring isnt too stacked on top of eachother to casue a short circuit
3	Battery	Electrical	Battery could loose its ability to charge propperly	6	Over use / too long left on charger	6	Overcharge/ Overdischarge Testing, Charge Cycle Testing	1	36	Have warnings on the product that give instructions on teh propper use and charging requirements
4	Featherboard	Bending Strain Fracture	Becasue the device needs to be felxable, the device might bend but the fetherboard could break under the bending stress	3	Bending/Breaking	2	Insulation Packing	5	30	Position the board in a way that would be best suited for the use of the devise, as well as providing instructions for best use

FMEA (Part2)

5	Arduino	Failed Circuitry	Wires could disconnect from the arduino to the featherboard	4	Mistreatment/ movement of product	5	Circuit Testing	2	40	Have propper chackes during the manufacturing process to make sure parts dont come loose
6	Holding shell/component	High-cycle Fatigue	Could bend so much that it yields and breaks becasue of too much use	2	Bending/Breaking	6	Stress testing our material (TPU)	3	36	Use a material that is both flexable and resistant to benging fracture
7	Insulation	Impact Deformation	The weight of the components on top of the insulation could casue it to deform or break out of place	1	Material stress testing	3	Stress testing our material (TPE)	2	6	Use a material that is both flexable and resistant to benging fracture
8	Sticker Adhesive	Adhesive Wear	Could loose its stickability after multiple uses	4	Loose Stick	8	Adhesive Strength Testing	5	160	Find a material that is reuseable while also being able to keep its stick

Testing Procedures

- For our second semester testing: dog testing
- In our prototyping stage, we have decided to create two different devices,
 - o one we could test on dogs

-

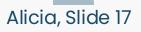
-

-

- o other we would be able to test on humans in the future
- The innerworkings of the second device will not be any different, we are just planning on including a harness on the 'dog version' so that it would stay in place during use/testing

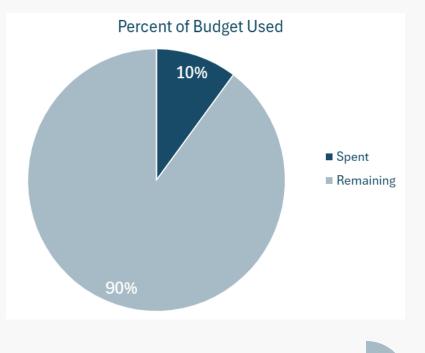
Gantt Chart

							WEEK		WEEK 2	 EEK 3	WE	X A	WE	EK 5	WEE	14	WE	FK 7	WE	FK 8		WEEK 9	1	VEEK 10		WEEK 11	WEEK 12		WEEK 13		WEEK 14		WEEK 1	
TASK 1 ID 1	IASK IITLE	TASK OWNER	START	DUE DATE	DURATION IN DAYS	PCT OF TASK COMPLETE																												
1 1	Presentation 1																																	
1.1	GFD	Alicia	09/03/24	09/17/24	14	100%																												-
1.2	Literature Review	AL	09/03/24	09/17/24	14	100%																												_
1.3	Mathematical Modeling	AL	09/03/24	09/17/24	14	100%																												_
1.4	Budget	Normo	09/03/24	09/17/24	14	100%																												
	Project Description	Cloire	09/03/24		14	100%		_					_							_														-
1.6	Benchmorking	AL	09/03/24	09/17/24	14	100%																												-
	Presentation 2																																	
	Black Box Model	AL	09/23/24	10/07/24	14	100%				_						i ni n			_	_	_			_			_							-
	Concept Generation & Selection	Alcia		10/07/24	14	100%																												-
	Colculations	AL		10/07/24	14	100%						+++							+ + +															
	BOM	AL	09/23/24		14	100%																												
	Budget	AL		10/07/24	14	100%															++-											+		-
	CAD Model	Norma	09/23/24		14	100%				 							-																	-
	Specification Table	Claire		10/07/24	14	100%						+ + -							+ + +		+ +	+++										++-	\vdash	+
	Report 1	Clare	07/23/24	10/07/24	1.	100%																										_		_
			10,000,004	10/18/24	10	100%																											_	
	Background	Normo						_		 _			_												_			_		_			\mapsto	_
	Requirements	Alicio		10/18/24	10	100%		_		_																	_			_			\mapsto	_
	Research within your design space	AI		10/18/24	10	100%		_		_																				_				_
	Design Concepts	Al		10/18/24	10	100%							_																	_			\square	_
	Appendix	Cloire	10/08/24	10/18/24	10	100%													_															_
	Nebsite Development																																	
	Project Description	Claire		10/25/24	14	100%																												
	About the team	Alicio	10/11/24	10/25/24	14	100%																												
	Gollery	AI		10/25/24	14	100%																												
4.4	Documents	AI	10/11/24	10/25/24	14	100%																	. L.											
4 1	Prototype Demo 1																																	
.4.1	Order Prototype Materials	AL	10/14/24	11/05/24	22	100%																												
4.2	Meet with team to discuss prototyping	AL	11/05/24	11/08/24	3	25%																												
4.2.1	Virtual Prototype	TBD	11/05/24	11/12/24	7	10%																												
4.2.2	Physical Prototype	TBD	11/05/24	11/12/24	7	10%																												
5	Homework 4																																	
5.1	Heat Calculations	Alicia	11/05/24	11/22/24	17	0%																												
5.2	Circuit Analysis	Cloire	11/05/24	11/22/24	17	0%																												
5.3	Material Analysis	Norma	11/05/24	11/22/24	17	0%																												
	Report 2																																	
6.1 6.2			11/12/24	11/27/24 11/27/24		0%													+ + +				_										++	-
	Final CAD Design		11/12/24	11/2//24	15	0%																												
				12/03/24	18	0%																												
			11/15/24		18	0%																												
8	Prototype Demo 2																																	
			11/18/24	12/04/24 12/04/24	16	0%						-		-		-			+ + +		-	-												-
9	Website Check 2		11/10/24	12/04/24		005																												
				12/07/24	16	0%																												
			11/21/24	12/07/24	16	0%																												



Budget: Pricing Strategy

Up to \$5000; additional funding subject to the disbursement within each capstone group involved


- One unit is about \$290
- Making 5 units; comes out to \$1450
 - Product parts in next slide

Project budget	\$5K
Anticipated Expenses (estimated)	\$3K
Actual Expenses (to date)	\$1450
Resulting Balance (to date)	\$5K

Budget: Current Spending

Budget S	spending
Budget	\$5,000
Prototyping Materials	\$510
Total Budget Left	\$4,490

Thank You, Questions?